
www.manaraa.com

ReflecTS;
A Flexible Transaction Service Framework

Anna-Brith Arntsen
Computer Science Department

University of Tromsoe
9037 Tromsoe, Norway

annab@cs.uit.no

Randi Karlsen
Computer Science Department

University of Tromsoe
9037 Tromsoe, Norway

randi@cs.uit.no

ABSTRACT
Transactional requirements, from applications and execu-
tion environments, are varying and may exceed traditional
ACID properties. We believe that transactional middleware
platforms must be flexible in order to adapt to these require-
ments. Present systems are, however, inflexible with respect
to such adaptations. ReflecTS is a flexible transaction pro-
cessing platform maintaining an extensible number of con-
currently running transaction services. This paper presents
the architecture and the first prototype of ReflecTS, which
focuses on a transaction service selection procedure. The
selection procedure is based on XML-specifications of trans-
actional requirements and transaction service descriptions -
making the platform adjustable to varying requirements.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; H.2.4 [Database Management]: Systems—trans-
action processing

General Terms
Design, management, reliability

Keywords
Flexible transaction processing, middleware, reflection, com-
ponent technology, requirement specifications

1. INTRODUCTION
Today’s application domains and execution environments

have requirements to transaction execution that are vary-
ing and exceed traditional ACID properties. Applications
are also under constant evolution, which mean that new
requirements can arise. Varying and beyond-ACID transac-
tional requirements demand for a flexible transaction execu-
tion environment. These requirements are not met by cur-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RM ’05, November 28- December 2, 2005 Grenoble, France
Copyright 2005 ACM 1-59593-270- 4/05/11 ...$5.00.

rent transactional middleware solutions where merely ACID
transactions are supported.

Application domains, including workflow, cooperative work,
medical information systems and e-commerce, all possess
varying requirements. The travel arrangement scenario is a
well-known example of a long-running beyond-ACID trans-
action. A user requests a hotel room (T1), a flight (T2), a
car (T3), a restaurant table (T4), and a theater ticket (T5).
He may also want to specify alternative hotels and restau-
rants. Not all reservations are equally important, and a
restaurant table may for instance be omitted from the trans-
action. This transaction must be structured as a beyond-
ACID transaction where intermediate results of individual
tasks (subtransactions T1-T5) can be committed and re-
vealed when finished. Commit of partial results requires
compensating transactions to be specified and executed in
case of rollback [11].

Another example is a medical information system where
patient journals, radiographs and spoken reports are stored
over a number of heterogeneous sites. Medical personnel
handling patient information may have either ACID or beyond-
ACID requirements to transactions. For instance, when in
an emergency, the response time is important. This imposes
a time constraint. Further, mobility is a central environ-
mental challenge. Medical personnel on a place of loss are
most likely equipped with PDA, sensor- and recording de-
vices wanting to transfer and receive real-time information
with quality of service guarantees. These examples show
that transactional requirements may vary between applica-
tions and between users within the same application.

A number of advanced transaction models [10, 23, 20, 11]
have been proposed to meet different requirements. They
address specific transactional requirements, such as relaxed
atomicity and isolation, offering some flexibility. Many of
these models where suggested with specific applications in
mind, with fixed semantics and correctness criteria. Conse-
quently, they fail to provide sufficient support for wide areas
of applications. It is unrealistic to believe that the ”one-size
fits all” paradigm will suffice and that a single approach to
extended transactions will suit all applications. The coun-
terpart to the ”one-size fits all” paradigm, which is the main
motivation behind our work, is to some extend recognized
within the web-services domain where for instance the WS-
transaction [15] specification describes a solution providing
two different transaction services.

In this paper we present the architecture and the cur-
rent prototype of ReflecTS, a highly adaptable and flexible

Article 4

www.manaraa.com

transaction processing platform. ReflecTS serves varying
requirements by offering a number of concurrently running
transaction services where each service provides different
transactional guarantees. Hence, the fundamental mecha-
nisms and the main contribution of ReflecTS is to adapt to
varying requirements by configuring and selecting transac-
tion services according to the needs of the applications.

We build ReflecTS using component technology through-
out the whole platform. To achieve configurability and re-
configurability of transaction services, our approach is based
on the reflective building blocks OpenCOM components [8]
and ReMMoC component frameworks [12]. Further, a trans-
action service selection procedure is based on XML specifica-
tions of transactional requirements and transaction services.

In the remainder of this paper we first, in section 2, give
necessary background information on OpenCOM compo-
nents and ReMMoC component frameworks. Then, the
ReflecTS architecture and prototype is presented in section
3. Section 4 follows with related work and section 5 draws
concluding remarks and gives directions for future work.

2. BACKGROUND
Reflection, components and component frameworks are

means to achieve flexible and configurable middleware sys-
tems today. In this section, we briefly present the building
blocks of ReflecTS: the OpenCOM component model and
ReMMoC component frameworks.

Reflection and Middleware Construction
Reflection is a technique applied for “opening up” a system
to support inspection and adaptation of internal structure
and behaviour [24][19]. Meta-interfaces provide operations
to inspect the internal details of the platform (introspection)
and to change the underlying middleware (adaptation). Two
styles of reflection can be considered [4]: Structural reflec-
tion to inspect and change the underlying structure of the
system, and behavioral reflection to inspect and change the
activity in the underlying system.

Reflective middleware platforms utilize the concepts of
open implementation and reflection to get access to the un-
derlying virtual machine. A number of such platforms have
been developed, including OpenORB [5] and ReMMoC [12],
which are build of reflective OpenCOM components and
component frameworks.

OpenCOM Components
According to Szyperski [26], a component can be viewed
as: ”a unit of composition with contractually specified inter-
faces and explicit context dependencies, and in this context,
a component can be deployed independently and is subject to
third-party composition”.

Components implement strong interfaces and encapsulate
implementation details. Hence, components can be added,
removed or replaced, making component-based middleware
systems adaptable. One of the many available component
models is OpenCOM [8], a lightweight, efficient and reflec-
tive component model built upon the core concepts of COM
[6]. OpenCOM was designed specifically for the implemen-
tation of OpenORB [5] and is considered a good model for
this purpose.

The fundamental concepts of OpenCOM are interfaces,
receptacle and connections (bindings between interfaces and
receptacles). An interface represents a unit of service provi-

Interceptor

 framework
 ReMMoC component

Graph of internal componentsIAccept

IMetaInterface IConnections

CF service

(can be
exposed)

CF receptacles
(can be exposed)

ICFMetaArchitecture

ILifeCycle

Interfaces

Lock

Figure 1: ReMMoC Component Framework

sion and a receptacle a unit of service requirement. The base
interfaces of an OpenCOM component are IMetaInterface,
ILifeCylce and IConnections. Reflective features are added
to OpenCOM through meta-interfaces for introspection and
adaptation: IMetaInterception, IMetaArchitecture and
IMetaInterface. A standard runtime substrate maintains
a system graph of components and manages the creation
and deletion of components.

ReMMoC Component Frameworks
Component frameworks (CF) are defined by Szyperski [26]
as: ”a collection of rules and interfaces that govern the in-
teraction of a set of components plugged into them”. A CF
enforces architectural principles on the components it sup-
ports. This is especially important in reflective architectures
with dynamic changes that must be verified.

Both OpenORB and ReMMoC define a component frame-
work model which is constrained by the choice of Open-
COM as the component model. We choose ReMMoC CF
as the base CF for ReflecTS as it, contrary to OpenORB
CF, has added domain-specific features for maintaining and
controlling changes to the component graph. Changes are
restricted to equal a valid component configuration. These
valid configurations are reachable through the IAccept in-
terface. ReMMoC CF also provides a method for assuring
that all changes to existing configurations are made at ap-
propriate times. This is done by implementing a standard
readers/writers lock to access the local CF graph. The ReM-
MoC CF model is pictured in figure 1.

A ReMMoC CF is itself an OpenCOM component main-
taining a graph of internal structure. Each ReMMoC CF
implements at least the base interfaces of an OpenCOM
component (IMetaInterface, ILifeCycle, IConnections). To
inspect its internal structure, a CF also implements the
IMetaArchitecture interface. Further, to adapt the internal
structure of its component configuration, each CF imple-
ments the CF-specific interface ICFMetaArchitecture [12],
with provided operations for inspection and adaptation.

3. REFLECTS

3.1 Introduction
As previously noticed, there is a big gap between offered

and required support for varying transactional requirements.
ReflecTS has been designed to close this gap and offers flex-
ible transaction processing by providing an extensible num-
ber transaction services. The main features of ReflecTS are
as follows:

Article 4

www.manaraa.com

ReflecTS API (i.e. TX_FlexTS)

AP

Base
Info

TSActivate TSInstall

RM

ITS

XA

ReflecTS Framework
Framwork

TS
TS

Figure 2: Overview of ReflecTS

1. Configuration and reconfiguration of transaction ser-
vices

2. Deployment of an extensible number of transaction
services supporting dissimilar transactional requirements

3. Selection of transaction services based on formal spec-
ifications of requirements and services

4. Management of concurrently running transaction ser-
vices

The properties of ReflecTS has been influenced by the
TSenvironment [18, 17], which is a model for an adapt-
able transactional system. Within TSenvironment, trans-
action services can be assembled, deployed, modified and
concurrently used according to the needs of the applications.
ReflecTS is designed for managing global transactions in a
distributed environment. A global transaction is typically
composed of a number of subtransactions, which are exe-
cuted and controlled by underlying systems.

In the rest of this section, we first outline the architec-
ture of ReflecTS and then present the current prototype of
ReflecTS.

3.2 ReflecTS Architecture
ReflecTS is hierarchically composed of two component

frameworks; ReflecTS Framework and TS Framework. These
frameworks host a number of components and transaction
service implementations, expose interfaces and provide poli-
cies for constraining changes. An overview of the ReflecTS
platform is given in figure 2.

3.2.1 Overview
The ReflecTS API defines the interaction between ap-

plication programs and ReflecTS. For transaction execu-
tion purposes, an interface contains methods for controlling
transactions. An example of such an interface is TX_FlexTS,
which is presented in the next section. While global trans-
action management (including global commit/recovery and
global concurrency control) is performed by the transac-
tion services within TSFramework, local transaction control
is performed by transactional mechanisms in underlying re-
source managers (RM) where the actual operations are car-
ried out.

Transaction services are offered via the ITS interface. In
figure 2, several arrows between TSActivate and the de-
ployed transactions services illustrates concurrently active
services. Likewise, several arrows between ReflecTS and re-
source managers (RMs) illustrates that numerous RMs can
be involved in one or more transactions.

The ReflecTS-RM interaction is determined by the X/Open
XA-interface [13] when the RM’s are XA-compliant. This
interface allows ReflecTS to structure the work of RMs into
global transactions and coordinate global completion or re-
covery.

3.2.2 TS Framework
TS Framework is configured by plugging in an extensible

number of different transaction service (TS) implementa-
tions, with possibly different transactional guarantees. Thus,
ReflecTS provide the transactional properties, P = P1, . . . , Pn,
where Pi represents the properties of transaction service
TSi.

Transaction services are either active or inactive. An ac-
tive service is currently in use by at least one transaction,
while an inactive service is not. Two services, TSi and TSj ,
are incompatible if the transactional properties of at least
one of them cannot be guaranteed. It is the responsibility
of ReflecTS to manage TS’s such that incompatibility do
not interfere with TS correctness. Concurrently active and
compatible services do not interfere.

Configurations and reconfigurations of transaction services
conforms to valid services and architectures, controlled by
TS_Framework and according to the features of ReMMoC
component framework.

3.2.3 ReflecTS Framework
The components of ReflecTS Framework perform tasks

such as transaction service configuration, reconfiguration,
selection and activation.
TSActivate receives requests for transaction execution,

performs transaction service selection and evaluates com-
patibility. Hence, TSActivate enables behavioral reflection.
Service selection is based on XML specifications of transac-
tional requirements and deployed transaction services. Prior
to completing service selection, vertical and horizontal com-
patibility is determined. Vertical compatibility is evaluated
between the transactional mechanisms (commit, recovery,
concurrency) of the elected TS and those of the involved
resource managers. Before activating the selected TS, hori-
zontal compatibility is determined. Horizontal compatibility
is defined between concurrently active services and involves
a thoroughly comparing of transactional mechanisms of each
service. However, examining horizontal compatibility is only
necessary if the transaction services are working towards the
same resource manager and the same dataset.
TSInstall handles requests for transaction service config-

uration and reconfiguration, and assures that they conform
to valid services. By exploring the features of the component
framework model, TSInstall enable structural reflection.

The InfoBase component stores information about de-
ployed transaction services; transaction service (TS) descrip-
tors and compatibility information (vertical and horizon-
tal) using XML. TS descriptors are provided InfoBase from
TSInstall. Further, descriptors and compatibility informa-
tion are encompassed in the transaction service selection and
activation procedures carried out by TSActivate.

3.3 ReflecTS Prototype
This section describes the first prototype of ReflecTS fo-

cusing on behavioral reflection. The prototype implements
TSActivate including transaction service selection and ac-
tivation, and excludes TSInstall. We also omit discussing

Article 4

www.manaraa.com

vertical and horizontal compatibility. The platform is still
configurable and reconfigurable as the feature for changing
it - the ICFMetaArchitecture interface - is inherent in the
component framework model.

To support transaction execution, ReflecTS prototype de-
scribes an interface and a specification. The interface, TX_FlexTS,
represents the AP-ReflecTS interaction, and the TX_RQ spec-
ification represents a formal way to describe transactional re-
quirements by using XML. The transaction service selection
procedure performed by TSActivate receives transactional
requirements via TX_FlexTS and gathers XML-specifications
of deployed transaction services from InfoBase. Further,
the selection procedure is executed based on these specifica-
tions, making ReflecTS adaptable to varying requirements.

3.3.1 Interfaces
TX_FlexTS, is the interface by which applications call ReflecTS

to demarcate global transactions and to control the direc-
tion of their completion. The following table presents the
IDL-specification of the TX_FlexTS interface.

interface IReflecTS:IUnknown
HRESULT Trans Begin(char* XMLDOC)
HRESULT Trans Commit()
HRESULT Trans Rollback()
HRESULT Trans Info()

The design of TX_FlexTS has been influenced by the TX-
interface of X/Open DTP [14], but differ from it in several
respects to conform to varying transactional requirements.
First, the XML-description of transactional requirements is
added to the Trans Begin() request. Next, TX_FlexTS does
not implement routines to open and close resource managers
linked with the application. The TX-interface embraces
these routines, which is an accomplished task when there
is only one transaction service available. Within ReflecTS

there might be several services available, and compatibil-
ity must be evaluated before service selection. The selected
service is then responsible for opening and closing resource
managers. Further, the TX-interface includes a routine for
setting transaction timeout. This is not included in the
TX_FlexTS interface, but is added as a requirement to the
TX_RQ specification.

Every transaction service implements ITS. Literally, this
interface is a projection of the TX_FlexTS interface. An ex-
ception is that there is no transferal of transactional require-
ments. Based on our current work, we believe that this in-
terface is sufficient to explore the different properties of the
different transaction services.

3.3.2 TXRQ Specification
The TX_RQ Specification formally describes a variety of

transactional requirements by using XML. Literally, TX_RQ
specifies a range of different transaction models, which easily
can be adapted to suit an arbitrary transaction model due
to the extensibility of XML.

Properties can be refined into specialized properties. The
following table lists a suggestion of transactional require-
ments, with requirements to the left and refinements the
right, mostly focusing on the ACID properties. It is impor-
tant to note that this is a preliminary suggestion that easily
can be changed.

Requirement Degree of Requirement
Atomicity Strict, Relaxed,

Alternative, Exception
Consistency Strict
Isolation Strict, Relaxed
Durability Strict
Time Strict, Repetitive

In this approach, atomicity can possess the following de-
grees: (1) Strict atomicity causes all subtransactions to com-
plete their work before commit of global transaction. (2)
Relaxed atomicity indicates that subtransactions can com-
mit unilaterally before completion of the global transaction.
This requires that subtransactions define associated com-
pensating transactions. Parameter tags in the specification
defines early commit of subtransactions and compensating
transactions. (3) Alternative atomicity is introduced for
atomicity specification in case alternative ways of execution
are allowed and (4) exception atomicity is defined for situa-
tions when there are vital versus non-vital subtransactions.

The level of isolation follows implicitly by the level of
atomicity. When atomicity is relaxed and partial results
early committed, we would like to reveal those results by
relaxing the isolation requirement. Controlling the use of
partly committed results is part of the mechanism imple-
mented by the transaction service. The combination of
atomicity and isolation follow strict rules: relaxed isolation
is only possible when atomicity is relaxed.

Consistency needs to be fully preserved to ensure the cor-
rectness of the results of a transaction execution. Correct-
ness might however, be hard to define for a transaction with
relaxed atomicity and isolation. With strict isolation, the
database defines the correctness criteria. With relaxed iso-
lation, the correctness criteria can be user-defined.

As for consistency, durability must be present to ensure
that results of transactions are permanent. One question is
when to save the results of committed parts of long-running
activities. Saving partial results on the fly require commit-
dependency and abort-dependency specifications. In addi-
tion, when isolation is relaxed, sharing may occur. For both
situations, compensating activities must be specified.

The TX_RQ Specification is outlined below.

TX RQ Specification

<Requirements>

<Requirement>

<Name>NameOfRequirement</Name>

<Degree>DegreeOfRequirement</Degree>

<ParameterList>

<Parameter>

<Name>NameOfParameter</Name>

<Values>

<Value>ParameterValue</Value>

</Values>

</Parameter>

</ParameterList>

</Requirement>

</Requirements>

The following exemplifies use of this specification. We
describe two different transaction models: one traditional
ACID transaction and one long-running beyond-ACID trans-
action as described in the travel arrangement scenario in sec-
tion 1. This specification could naturally be fulfilled by an

Article 4

www.manaraa.com

implementation of for instance the Saga transaction model
[11] or the DOM transaction model [10]. As an extension
follows that, any transaction model can be expressed using
this specification.

TX RQ Specification of an ACID transaction

<Requirements>

<Requirement>

<Name>Atomicity</Name>

<Degree>Strict</Degree>

</Requirement>

</Requirements>

TX RQ Specification of a beyond-ACID transaction

<Requirements>

<Requirement>

<Name>Atomicity</Name>

<Degree>Relaxed</Degree>

<Parameterlist>

<Parameter>

<Task>T1</Task>

<Values>

<Value>CT1</Value>

"Compensating trans, CT for T2-T5"

</Values>

</Parameter>

</Parameterlist>

</Requirement>

<Requirement>

<Name>Atomicity</Name>

<Degree>Alternative</Degree>

<Parameterlist>

<Parameter>

<Task>T1</Task>

<Values>

<Value>AT11</Value>

"More alternative trans, AT"

</Values>

</Parameter>

</Parameterlist>

</Requirement>

</Requirements>

3.3.3 Transaction Service (TS) Descriptors
TS Descriptors contains information about transaction

processing mechanisms: commit, recovery and global con-
currency control (GCC). Two-phase commit (2PC) or one
of its extensions, for instance presumed nothing (PrN), pre-
sumed abort (PrA) or presumed commit (PrC) [2], fits as
global commit of distributed transactions. The presence
of GCC depends on the autonomy of the involved resource
managers. The most common approaches to beyond-ACID
transactions are for instance extensions of two-phase lock-
ing to altruistic locking or relaxation of serializability using
semantic information about transactions. With full isola-
tion, serializability is the only correctness criteria and strict
locking the selected GCC scheme. The following description
captures the essentials of a transaction service.

TS Description

<TS Descriptor>

<ServiceID>TS ID</ServiceID>

<Properties>TS Properties</Properties>

<TaskList>

<Task>

<TaskId>TaskId</TaskId>

<TaskParameters>

<Parameter>ParameterID</Parameter>

<Values>

<Value>ParameterValue</Value>

</Values>

</TaskParameters>

</Task>

</TaskList>

With this approach, the Properties tag can possess one
of two options: ACID or beyond-ACID. TaskID takes the
values Commit or GCC, and the following TaskParameter
tags with corresponding TaskValues are descriptions of the
specified mechanisms.

3.3.4 TS Selection
The TS Selection procedure is performed by TSActivate.

When selecting a transaction service, the requirements of
the transaction and the specification of deployed transac-
tion services are compared. The mapping of requirements
to a service need not be one-to-one, which means that a
specific set of requirements can be mapped to different TS’s.
The selection procedure first compares the requirement spec-
ification of TX RQ with the TS Properties specification of
TS Description. From our knowledge of the combination of
atomicity and isolation follows that when the requirement
specifications denotes strict atomicity, an atomic commit-
protocol as for instance 2PC must be selected. The struc-
ture of the specifications indicates that not only a few tags
must be extracted in order to select an appropriate service.

4. RELATED WORK
Existing transactional middleware platforms offer key in-

frastructures for distributed transaction processing, but with
limited flexibility. Platforms like Microsoft Transaction Server
(MTS) [9], Sun’s Java Transaction Server (JTS) [25], and
OMG’s Object Transaction Service (OTS) [1], provide merely
one transaction service with ACID guarantees. An excep-
tion from this is given by the CORBA Activity Service
Framework [16], where various extended transaction models
can be supported (although not concurrently) by providing
a general-purpose event signaling mechanism. Another ap-
proach is the WS-transactions [15] specification where two
transaction services are defined - one serving atomic ACID
transactions, and one serving long-running activities.

Flexibility within transactional systems can be found in
the works of Barga [3] and Wu [27]. Barga [3] describes a
Reflective Transaction Framework implementing extended
transaction models on top of TP-monitors. Wu [27] de-
scribes the use of Reflective Java to implement a flexible
transaction service. Related work on dynamic combination
and configuration of transactional and middleware systems
can be found in Zarras [28], Ramampiaro [22], Prochazka
[21] and Chrysanthis [7]. These works recognizes the di-
versity of systems and their different transactional require-
ments, and describes approaches to how these diverse needs
can be supported.
ReflecTS contrasts previous work in several matters. Within

ReflecTS transaction services can be added or removed ac-
cording to the needs of applications and execution environ-
ments. The services exhibit different guarantees, may run

Article 4

www.manaraa.com

concurrently, and can consequently cover different trans-
actional requirements simultaneously. ReflecTS adapts to
varying requirements by performing a selection among a
number of the available transaction services. This selection
is based on a formal description of transactional require-
ments and transaction services.

5. CONCLUSIONS AND FUTURE WORK
We argue that transactional middleware must meet vary-

ing transactional requirements from applications and exe-
cution environments. Our contribution to meet these re-
quirements is the design of ReflecTS, a flexible transac-
tion processing platform maintaining an extensible number
of concurrently running transaction services. Transaction
service selection is based on XML-specifications of require-
ments and deployed transaction services, making the plat-
form adjustable to different application needs. ReflecTS is
built using the reflective building blocks OpenCOM com-
ponents and ReMMoC component frameworks, making ser-
vices configurable and reconfigurable.

Our approach currently concentrates on transaction ser-
vice selection based on XML-specifications. The selection of
an appropriate transaction service for transaction execution
justifies the intention of our work - to assemble a flexible
transaction processing system.

Ongoing and future work includes further development of
the ReflecTS prototype to also include structural reflection,
and an evaluation of the selection procedure. Designing Re-
flecTS for a web services [15] environment is also a part of
current work. Further, we are working on the transaction
service management part, assuring correctness for concur-
rently running transaction services.

6. REFERENCES
[1] Corba services, transaction service specification, v1.1,

1997.

[2] Yousef J. Al-Houmaily and Panos K. Chrysanthis.
Atomicity with incompatible presumptions. pages
306–315, 1999.

[3] R. Barga and C. Pu. Reflection on a legacy
transaction processing monitor, 1996.

[4] Gordon S. Blair, G. Coulson, P. Robin, and
M. Papathomas. An architecture for next generation
middleware. In Proceedings of the IFIP International
Conference on Distributed Systems Platforms and
Open Distributed Processing, London, 1998.
Springer-Verlag.

[5] Gordon S. Blair, Geoff Coulson, Anders Andersen,
and Lynne Blair et.al. The design and implementation
of open orb 2. DSOnline, 2(6), 2001.

[6] Don Box. Essential COM. Addison-Wesley, 1998.

[7] Panos K. Chrysanthis and Krithi Ramamritham.
Synthesis of extended transaction models using acta.
ACM Transactions on Database Systems,
19(3):450–491, 1994.

[8] Michale Clarke, Gordon S. Blair, Geoff Coulson, and
Nikos Parlavantzas. An efficient component model for
the construction of adaptive middleware. In
Middleware, Heidelberg, Germany, 2001.

[9] Microsoft Corporation. The .net framework, 2000.

[10] Ahmed K. Elmagarmid, editor. Database Transaction
Models for Advanced Applications. Morgan Kaufmann

Publishers, 1992.

[11] Hector Garcia-Molina and Kenneth Salem. Sagas. In
Proceedings of the 1987 ACM SIGMOD international
conference on Management of data, pages 249–259.
ACM Press, 1987.

[12] Paul Grace. Overcoming Middleware Heterogeneity in
Mobile Computing Applications. PhD thesis, Lancaster
University, 2004.

[13] The Open Group. The x/open cae specification.
distributed transaction processing: The xa
specification. x/open document number:
Xo/ca/91/300, December 1991.

[14] The Open Group. X/open cae distributed transaction
processing: The tx specification, December 1995.

[15] W3C Working Group. Web services architecture,
working draft, February 2004.

[16] I. Houston, M. C. Little, I. Robinson, S. K.
Shrivastava, and S. M. Wheater. The corba activity
service framework for supporting extended
transactions. Lecture Notes in Computer Science,
2218, 2001.

[17] Randi Karlsen. An adaptive transactional system -
framework and service synchronization,. In
International Symposium on Distributed Objects and
Applications (DOA), Catania, Sicily, November 2003.

[18] Randi Karlsen and A. B. A. Jakobsen. Transaction
service management an approach towards a reflective
transaction service. In 2nd International Workshop on
Reflective and Adaptive Middleware, Rio de Janeiro,
Brazil, June 2003.

[19] Pattie Maes. Concepts and experiments in
computational reflection. In Proceedings of the
Conference of Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), oct 1987.

[20] J. E. Moss. Nested transactions: An approach to
reliable distributed computing, 1985.

[21] Marek Prochazka. Advanced transactions in
Enterprise Java Beans. Lecture Notes in Computer
Science, 1999, 2001.

[22] Heri Ramampiaro and M. Nygaard. Cagistrans:
Providing adaptable transactional support for
cooperative work. In Proceedings of the 6th INFORMS
conference on Information Systems and Technology
(CIST2001), 2001.

[23] K. Ramamritham and P.K. Chrysanthis. Executive
briefing: Advances in concurrency control and
transaction processing. IEEE Computer Society Press,
Los Alamitos, California, 1997.

[24] B.C. Smith. Procedural Reflection in Programming
Languages. PhD thesis, MIT, MIT Computer Science
Technical Report 272, Cambridge, 1982.

[25] Allarmaraju Subhramanyam. Java transaction service,
1999.

[26] Clemens Szyperski. Component Software, Beyond
Object-Oriented Programming. Addison-Wesley, 1997.

[27] Zhixue Wu. Reflective java and a reflective
component-based transaction architecture. In
OOPSLA workshop, 1998.

[28] A. Zarras and V. Issarny. A framework for systematic
synthesis of transactional middleware, 1998.

Article 4

